Derandomizing Approximation Algorithms Based on Semidefinite Programming
نویسندگان
چکیده
Remarkable breakthroughs have been made recently in obtaining approximate solutions to some fundamental NP-hard problems, namely Max-Cut, Max k-Cut, Max-Sat, Max-Dicut, Max-bisection, k-vertex coloring, maximum independent set, etc. All these breakthroughs involve polynomial time randomized algorithms based upon semidefinite programming, a technique pioneered by Goemans and Williamson. In this paper, we give techniques to derandomize the above class of randomized algorithms, thus obtaining polynomial time deterministic algorithms with the same approximation ratios for the above problems. At the heart of our technique is the use of spherical symmetry to convert a nested sequence of n integrations, which cannot be approximated sufficiently well in polynomial time, to a nested sequence of just a constant number of integrations, which can be approximated sufficiently well in polynomial time.
منابع مشابه
On the Optimality of Some Semidefinite Programming-Based Approximation Algorithms under the Unique Games Conjecture
متن کامل
A path-following infeasible interior-point algorithm for semidefinite programming
We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...
متن کاملSemidefinite Approximations for Global Unconstrained Polynomial Optimization
We consider the problem of minimizing a polynomial function on R, known to be hard even for degree 4 polynomials. Therefore approximation algorithms are of interest. Lasserre [15] and Parrilo [23] have proposed approximating the minimum of the original problem using a hierarchy of lower bounds obtained via semidefinite programming relaxations. We propose here a method for computing tight upper ...
متن کاملAdvanced Algorithm Design: Semidefinite Programming (SDP)
In the last few lectures, we considered constant-factor approximation algorithms that relied on linear programming and greedy algorithms. In this lecture, we will analyze algorithms that use a more powerful mathematical programming technique called semidefinite programming. We will illustrate the power of semidefinite programming by looking at the maximum cut problem. However, SDPs are useful f...
متن کاملInterior Point and Semidefinite Approaches in Combinatorial Optimization
Conic programming, especially semidefinite programming (SDP), has been regarded as linear programming for the 21st century. This tremendous excitement was spurred in part by a variety of applications of SDP in integer programming (IP) and combinatorial optimization, and the development of efficient primal-dual interior-point methods (IPMs) and various first order approaches for the solution of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Comput.
دوره 28 شماره
صفحات -
تاریخ انتشار 1999